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ABSTRACT

A copper(I)/2,20-bipyridyl complex catalyzes an amination reaction of silyl ketene acetals with N-chloroamines, presenting a new preparative
method of R-amino esters.

Amines intrinsically possess a nucleophilic property.
Their nucleophilic substitution reactions present con-
ventional preparative methods of substituted amines.
Transition-metal-catalyzed cross-coupling reactions of
aryl halides with amines are also powerful methods for
the formation of C�N bonds.1 An alternative pathway to
substituted amines has recently become available by the
use of electrophilic amination reagents together with nu-
cleophilic organometallic species.2 For example, Johnson
and co-workers have reported their pioneering research
on copper- and nickel-catalyzed amination reactions of

diarylzinc compounds using N-hydroxyl(dialkyl)amine
derivatives as the amination reagent.2e,f N-Chloroamines
are also promising amination reagents with their easy
availability3 as well as high reactivity.4 Jarvo and co-
worker reported a nickel-catalyzed amination reaction of
diarylzinc compounds with N-chloro(dialkyl)amines,
which formed tertiary anilines.2k Similarly, secondary ani-
lines are produced by the reaction of in situ-generated
N-chloro(monoalkyl)amines with arylmagnesium reagents
in the presence of an excess amount of titanium(IV)
isopropoxide.2l,5 Furthermore, transition-metal-catalyzed
direct C�H amination reactions of aromatic compounds
with N-chloro(dialkyl)amines have been developed by
Miura,6 Yu,7 and Glorius.8,9 It is also possible to intro-
duce an amino group at the R-positions of carbonyl
compounds by the reaction of their lithium enolates with
N-chloroamines,10,11 although the substrate scope is lim-
ited probably due to the strongly basic reaction conditions
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as well as competing side reactions such as a chlorina-
tion reaction. We envisaged that an analogous amination
reaction of carbonyl compounds would become feasible
under milder conditions if it is assisted by transition-metal
catalysts. Herein we report that a copper(I)/2,20-bipyridyl
complex successfully catalyzes an amination reaction of
silyl ketene acetals withN-chloroamines to affordR-amino
esters.
We initially attempted a direct amination reaction of

methyl phenylacetate with N-chloromorpholine (2a, 1.3
equiv) in the presence of CuI (10mol%) and 2,20-bipyridyl
(10 mol %). Various bases (2.0 equiv) such as NEt(i-Pr)2,
K2CO3, and K(Ot-Bu) were examined, and the desired
methyl 2-morpholino-2-phenylacetate (3aa) was formed in
6% (NMR) yield at best when K2CO3 was used. Then,
methyl phenylacetate was replaced by its activated form,
trimethylsilyl ketene acetal 1a (E/Z = 76:24). An amina-
tion reaction proceeded in the absence of a base, and after
12 h, 3aa was obtained in 39% yield together with methyl
2-chloro-2-phenylacetate (4aa, 29% yield) (Scheme 1).

Other sterically bulkier silyl groups were examined, and
3aa was obtained in 80% isolated yield when triisopropyl-
silyl ketene acetal 1c (E/Z = 82:18) was employed. It
seemed that bulkier silyl groups disfavored the formation
of 4aa to improve the yield of 3aa. A similar result was
observed with 1c of an opposite E/Z ratio (7:93).12,13 In
the absence of a copper catalyst, only a small amount of

4aa (5% yield) was obtained together with the recov-
ered 1c (95%).
VariousN-chloroamines 2 were subjected to the amina-

tion reaction of 1c (E/Z = 7:93) (Table 1). Cyclic N-
chloroamines 2b�f reacted smoothly to give the corre-
sponding products 3cb�cf in yields ranging from 60 to
83% (entries 1�5).AcyclicN-chloroamines 2g�iwere also
competent amination reagents (entries 6�8). On the other
hand, the reaction withN-chloro(dibenzyl)amine (2j) gave
the product 3cj in only 28% yield due to a competing
chlorination reaction of 1c (entry 9).

Next, the scope of silyl ketene acetals 1 was examined
using 2a (Table 2). Whereas the reaction of R-alkyl-substi-
tuted silyl ketene acetals was sluggish,14 R-aryl-substituted

Scheme 1. Effect of Silyl Group

Table 1. Cu(I)-Catalyzed Amination Reaction of Silyl Ketene
Acetal 1c with Various N-Chloroamines 2b�ja

aConditions: 1c (0.20 mmol), 2 (0.26 mmol), CuI (10 mol %), and
2,20-bipyridyl (10 mol %) in CH3CN (2 mL) at rt for 12 h, unless
otherwise noted. b Isolated yields (averages of 2 runs). cUsing 0.30mmol
of 2g. dChlorination product was obtained in 40% yield.
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substrates successfully participated in the reaction. All
three substrates 1d�f with isomeric tolyl substituents
afforded the corresponding products 3da�fa in good
yields (entries 1�3). Both electron-withdrawing and
-donating groups were allowed for the aryl substituent
(entries 4�6). Thienyl-substituted substrate 1j also gave
the product 3ja in 67% yield (entry 7).

The commercially available t-butyldimethylsilyl ketene
acetal 5 produced glycine derivative 6e in 59% yield (eq 1).

The facile availability of N-chloroamines from second-
ary amines permits a one-pot two-step synthesis starting
from amines on gram scale (eq 2). Treatment of morpho-
line (7a, 0.68 g, 7.8 mmol) with N-chlorosuccinimide
(NCS, 1.04 g, 7.8 mmol) in CH3CN at room temperature
for 30 min generated N-chloromorpholine (2a) quantita-
tively. Then, 1c (1.85 g, 6.0 mmol), CuI (10 mol %), and
2,20-bipyridyl (10 mol %) were sequentially added to the
reactionmixture, whichwas further stirred at room tempera-
ture for 12h.Theproduct3aa (1.14 g, 4.8mmol) was isolated
in 80% yield based upon 1c. The one-pot synthesis demon-
strates another advantage from the practical standpoint.

This one-pot two-step method was useful particularly
when anN-chloroamine was too unstable to be isolated, as

exemplified in eq 3.15 The R-amino ester 3ck was obtained
in 73% yield directly from 1,2,3,4-tetrahydroisoquino-
line (7k).

Upon the basis of experimental precedents in the litera-
ture, three plausible pathways are conceived for produc-
tion of 3 from 1 and 2 (Scheme 2). In pathway (I), silyl

ketene acetal 1 initially undergoes transmetalation16 with
copper(I) to generate nucleophilic copper(I) enolate A.17

The following reaction with N-chloroamine 2 gives R-
amino ester 3. Pathway (II) involves single-electron trans-
fer (SET) from copper(I) to N-chloroamine 2.18 The
resulting aminyl radical intermediate B couples with silyl
ketene acetal 1. SET back to copper(II) produces R-amino
ester 3 togetherwith triisopropylchlorosilane and copper(I).
In pathway (III), N-chloroamine 2 initially undergoes
oxidative addition to copper(I) to generate amino copper-
(III) speciesD.2h Transmetalation with silyl ketene acetal
1 furnishes copper(III) enolate E, and reductive elimina-
tion ensues.
Whereas a catalytic reaction of 1c with 2a using CuI/

1,10-phenanthroline gave 3aa in 72% yield, a stoichio-
metric reaction of 2a with copper/1,10-phenanthroline
enolateA, generated according to the Hartwig’s procedure,

Table 2. Cu(I)-Catalyzed Amination Reaction of Various Silyl
Ketene Acetals 1d�j with 4-Chloromorpholine 2aa

entry 1 (R, E/Z) 3 yield (%)b

1 1d (4-MeC6H4, 84:16) 3da 83

2 1e (3-MeC6H4, 81:19) 3ea 79

3 1f (2-MeC6H4, 68:32) 3fa 70

4 1g (4-MeOC6H4, 87:13) 3ga 89

5 1h (4-CF3OC6H4, 15:85) 3ha 55c

6 1i (4-ClC6H4, 45:55) 3ia 72

7 1j (3-thienyl, 58:42) 3ja 67

aConditions: 1 (0.20 mmol), 2a (0.26 mmol), CuI (10 mol %), and
2,20-bipyridyl (10 mol %) in CH3CN (2 mL) at rt for 12 h, unless
otherwise noted. b Isolated yield. cUsing 0.36 mmol of 2a.

Scheme 2. ProposedMechanisms for the Formation of 3 from 1

and 2

(15) When cyclohexylamine was treated with 1c under the same one-
pot reaction conditions, the desired R-amino ester was obtained in 20%
yield.

(16) For transmetalation between Cu(I) and trimethylsilyl ketene
acetals in the presence of a base, see: (a) Oisaki, K.; Suto, Y.; Kanai,M.;
Shibsaki, M. J. Am. Chem. Soc. 2003, 125, 5644. (b) Li, D.; Ohmiya, H.;
Sawamura, M. J. Am. Chem. Soc. 2011, 133, 5672.
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(18) (a)Heuger,G.;Kalsow, S.; G€ottlich,R.Eur. J. Org. Chem. 2002,

1848. (b) Tsuritani, T.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2003,
68, 3246.
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yielded only 8% of 3aa together with methyl phenylace-
tate (56% yield) and 4,40-bimorpholine (43% yield based
upon 2a) (eq 4).

In addition, the reactionof 1cwith2aunder the standard
conditions but in the presence of TEMPO (1.0 equiv)
afforded 3aa in almost same yield (72%). Thus, we prefer
pathway (III) as the most likely mechanistic scenario,
albeit with no experimental evidence to support it.
In summary, we have developed a copper-catalyzed ami-

nation reaction of silyl ketene acetals with N-chloroamines

under mild reaction conditions. This reaction provides an
efficient synthetic route to R-amino esters, which are sub-
structures found in a variety of bioactive compounds.
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